
USB (3.1.1)

USB Library
A software defined, industry-standard, USB library that allows you to control an USB bus via xCORE ports.

The library provides functionality to act as a USB device.

This library is aimed primarily for use with xCORE U-Series or the xCORE-200 Series devices but it does
also support xCORE L-Series devices.

Features

• USB 2.0 Full-speed (12Mbps) and High-speed (480Mbps) modes.
• Device mode.
• Bulk, control, interrupt and isochronous endpoint types supported.

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

USB device (U series) 23 (internal) 11 0 ~8.8K 1

USB device (xCORE-200 series) 23 (internal) 11 0 ~9.3K 1

USB device (L series) 13 8 0 ~8.4K 1

Software version and dependencies

This document pertains to version 3.1.1 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_logging (>=2.0.0)
• lib_xassert (>=2.0.0)

• lib_gpio (>=1.0.0)

Related application notes

The following application notes use this library:

• AN00125 - USB mass storage device class
• AN00126 - USB printer device class
• AN00127 - USB video device class
• AN00128 - USB Audio device class

• AN00129 - USB HID device class
• AN00130 - Extended USB HID class
• AN00131 - USB CDC-EDC device class
• AN00132 - USB Image device class

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006387



USB (3.1.1)

1 Hardware setup

1.1 Physical characteristics and setup

Details on the physical characteristics and how to integrate the USB connection to the xCORE device
into your system are all contain in the devices datasheet. Please refer to the device datasheet for this
information.

1.2 Ports/Pins

1.2.1 U-Series

The U-Series of devices have an integrated USB transceiver. Some ports are used to communicate with the
USB transceiver inside the U-Series packages. These ports/pins should not be used when USB functionality
is enabled. The ports/pins are shown in Table 1.

Pin Port

1b 4b 8b 16b 32b

X0D02 P4A0 P8A0 P16A0 P32A20

X0D03 P4A1 P8A1 P16A1 P32A21

X0D04 P4B0 P8A2 P16A2 P32A22

X0D05 P4B1 P8A3 P16A3 P32A23

X0D06 P4B2 P8A4 P16A4 P32A24

X0D07 P4B3 P8A5 P16A5 P32A25

X0D08 P4A2 P8A6 P16A6 P32A26

X0D09 P4A3 P8A7 P16A7 P32A27

X0D23 P1H0

X0D25 P1J0

X0D26 P4E0 P8C0 P16B0 P32A28

X0D27 P4E1 P8C1 P16B1 P32A29

X0D28 P4F0 P8C2 P16B2

X0D29 P4F1 P8C3 P16B3

X0D30 P4F2 P8C4 P16B4

X0D31 P4F3 P8C5 P16B5

X0D32 P4E2 P8C6 P16B6 P32A30

X0D33 P4E3 P8C7 P16B7 P32A31

X0D34 P1K0

X0D36 P1M0 P8D0 P16B8

X0D37 P1N0 P8C1 P16B1

X0D38 P1O0 P8C2 P16B2

X0D39 P1P0 P8C3 P16B3

Table 1: U-Series required pin/port connections

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006387



USB (3.1.1)

1.2.2 xCORE-200 Series

The xCORE 200 series of devices have an integrated USB transceiver. Some ports are used to communicate
with the USB transceiver inside the xCORE-200 series packages. These ports/pins should not be used
when USB functionality is enabled. The ports/pins are shown in Table 2.

Pin Port

1b 4b 8b 16b 32b

X0D00 P1A0

X0D02 P4A0 P8A0 P16A0 P32A20

X0D03 P4A1 P8A1 P16A1 P32A21

X0D04 P4B0 P8A2 P16A2 P32A22

X0D13 P4B1 P8A3 P16A3 P32A23

X0D22 P4B2 P8A4 P16A4 P32A24

X0D23 P4B3 P8A5 P16A5 P32A25

X0D34 P4A2 P8A6 P16A6 P32A26

X0D09 P4A3 P8A7 P16A7 P32A27

X0D10 P1C0

X0D12 P1E0

X0D13 P1F0

X0D14 P4C0 P8B0 P16A8

X0D15 P4C1 P8B1 P16A9

X0D16 P4D0 P8B2 P16A10

X0D17 P4D1 P8B3 P16A11

X0D18 P4D2 P8B4 P16A12

X0D19 P4D3 P8B5 P16A13

X0D20 P4C2 P8B6 P16A14

X0D21 P4C3 P8B7 P16A15

X0D22 P1G0

X0D23 P1H0

X0D24 P1I0

X0D34 P1K0

Table 2: xCORE-200 series required pin/port connec-
tions

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006387



USB (3.1.1)

1.2.3 L-Series

The ports used for the physical connection to the external ULPI transceiver must be connected as shown
in Table 3.

Pin Port Signal

1b 4b 8b

X0D12 P1E0 ULPI_STP

X0D13 P1F0 ULPI_NXT

X0D14 P4C0 P8B0 ULPI_DATA[7:0]

X0D15 P4C1 P8B1

X0D16 P4D0 P8B2

X0D17 P4D1 P8B3

X0D18 P4D2 P8B4

X0D19 P4D3 P8B5

X0D20 P4C2 P8B6

X0D21 P4C3 P8B7

X0D22 P1G0 ULPI_DIR

X0D23 P1H0 ULPI_CLK

X0D24 P1I0 ULPI_RST_N

Table 3: ULPI required pin/port connections

In addition some ports are used internally when the XUD library is in operation. For example pins X0D2-
X0D9, X0D26-X0D33 and X0D37-X0D43 on an XS1-L device should not be used.

Please refer to the device datasheet for further information on which ports are available.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006387



USB (3.1.1)

2 Usage

The USB library consists of a single main component: the XUD device driver. A typical application will use
have the following software architecture:

endpoint0endpoint0xudxud channel

app
task
app
taskchannel

DATA PATH

CONTROL PATH

Figure 1: USB task diagram

Here, the application interacts with the USB library in two ways. Data is sent and received directly from
the XUD component. This provides the path to the USB Endpoints of the device. Multiple tasks can be
connected to the XUD component to handle multiple endpoints in parallel. The application also interacts
with the special USB Endpoint 0 which handle configuration calls to the host. Each application will develop
its own Endpoint 0 code using the functions provided by the USB library.

2.1 The XUD (XMOS USB device) driver

The XUD component performs all the low-level I/O operations required to meet the USB 2.0 specification.
This processing goes up to and includes the transaction level. It removes all low-level timincg require-
ments from the application, allowing quick development of all manner of USB devices. The XUD Library
allows the implementation of both full-speed and high-speed USB 2.0 devices on U-Series, xCORE-200
Series and L-Series devices.

The U-Series and xCORE-200 Series include an integrated USB transceiver. For the L-Series the implemen-
tation requires the use of an external ULPI transceiver such as the SMSC USB33XX range. Two variant
of the component, with identical interfaces, are provided - one for U- and xCORE-200 Series and one for
L-Series devices.

The XUD component runs in a single core with endpoint and application cores communicating with it via
a combination of channel communication and shared memory variables.

There is one channel per IN or OUT endpoint. Endpoint 0 (the control endpoint) requires two channels,
one for each direction. Note, that throughout this document the USB nomenclature is used: an OUT
endpoint is used to transfer data from the host to the device, an IN endpoint is used when the host
requests data from the device. Connected tasks must be ready to communicate with the XUD component
whenever the host demands its attention. If not, the XUD component will NAK.

It is important to note that, for performance reasons, tasks communicate with the XUD component using a
combination of both xC channels and shared memory. It is therefore madatory that all cores that directly
communicate with the XUD task must be on the same tile as the task itself.

The main XUD task is implement by the xud() function (for U-series and xCORE-200 series devices) or the
xud_l_series() function (for L-series devices). The function should be called directly from the top-level
par statement in main() to ensure that the XUD Library is ready within the 100ms allowed by the USB
specification.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006387



USB (3.1.1)

2.2 Core speed

Due to I/O requirements, the XUD component requires a guaranteed MIPS rate to ensure correct operation.
This means that core count restrictions must be observed. The XUD task must run on a core running at
least at a speed of 80 MHz.

This means that for an xCORE device running at 400MHz there should be no more than five cores exe-
cuting at any time when using the XUD. For a 500MHz device no more than six cores shall execute at any
one time when using the XUD.

This restriction is only a requirement on the tile on which the XUD component is running. For example,
the other tile on an L16 device is unaffected by this restriction.

2.3 Setting up the XUD in your program

In your main function, the application must call the xud or xud_l_series function:

int main()
{

chan c_ep_out[3], c_ep_in[2];
par {

on tile[0]: xud(c_ep_out, 3,
c_ep_in, 2,
null, XUD_SPEED_HS, XUD_PWR_SELF);

on tile[0]: Endpoint0(c_ep_out[0], c_ep_in[0]);

// Application specific cores
...

}
return 0;

}

The XUD is connected to an array of channels for the IN endpoints and an array of channels for the OUT
endpoints.

2.4 Endpoint addresses

Endpoint 0 uses index 0 of both the endpoint type table and the channel array. The address of other
endpoints must also correspond to their index in the endpoint table and the channel array.

2.5 PwrConfig

The PwrConfig parameter to XUD function indicates if the device is bus or self-powered.

Valid values for this parameter are XUD_PWR_SELF and XUD_PWR_BUS.

When XUD_PWR_SELF is used, the XUD monitors the VBUS input for a valid voltage and reponds appropri-
ately. The USB Specification states that the devices pull-ups must be disabled when a valid VBUS is not
present. This is important when submitting a device for compliance testing since this is explicitly tested.

If the device is bus-powered XUD_PWR_SELF can be used since is assumed that the device is not powered
up when VBUS is not present and therefore no voltage monitoring is required. In this configuration the
VBUS input to the device/PHY need not be present.

XUD_PWR_BUS can be used in order to run on a self-powered board without provision for VBUS wiring to
the PHY/device, but this is not advised.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006387



USB (3.1.1)

2.6 Endpoint communication with the XUD component

Communication state between a core and the XUD component is encapsulated in an opaque type XUD_ep
(see §3.2).

All client calls communicating with the XUD component pass in this type. These data structures can be
created at the start of execution of a client core with using XUD_InitEp() that takes as an argument
the endpoint channel connected to the XUD Library. This function also takes an argument to indicate the
transfer-type of the endpoint (bulk, control, isochronous or interrupt) as well as whether the endpoint
wishes to be informed about bus-resets (see §2.9).

For example, this code initializes a bulk endpoint:

void my_application(chanend c_ep_out) {
XUD_ep ep_out = XUD_InitEp(chan_ep0_out, XUD_EPTYPE_BUL);
...

The endpoint types are show in the following table:

Type Description

XUD_EPTYPE_ISO Isochronous endpoint

XUD_EPTYPE_INT Interrupt endpoint

XUD_EPTYPE_BUL Bulk endpoint

XUD_EPTYPE_CTL Control endpoint

XUD_EPTYPE_DIS Disabled endpoint

Table 4: Endpoint types

In addition XUD_STATUS_ENABLE can be ORed ino the endpoint type to indicate an endpoints that wishes
to be informed of USB bus resets (see §2.9).

2.7 Blocking sending and receiving data

An application specific endpoint can send data using several functions described in §3.2. In particular
XUD_SetBuffer() will send data from the host and XUD_GetBuffer() will receive data from the host.
These functions will automatically deal with any low-level complications required such as Packet ID tog-
gling etc.

The XUD_SetBuffer_EpMax function provides a similar function to XUD_SetBuffer function but it breaks
the data up in packets of a fixed maximum size. This is especially useful for control transfers where large
descriptors must be sent in typically 64 byte transactions.

Here is an example of sending a 4 bytes packet to the host:

void my_application(chanend c_ep_in) {
XUD_ep ep_out = XUD_InitEp(chan_ep0_in, XUD_EPTYPE_BUL);
...
char data[4];
...
XUD_SetBuffer(ep_hid, data, 4);
...

Note that these functions are blocking - they will wait until the host performs the transaction with the
device before you program can proceed.

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM006387



USB (3.1.1)

2.8 Asynchronous sending and recieving of data

Functions such as XUD_SetBuffer() and XUD_GetBuffer() block until data has either been successfully
sent or received to or from the host. For this reason it is not generally possible to handle multiple end-
points in a single core efficiently (or at all, depending on the protocols involved). The XUD library therefore
provides functions to allow the separation of requesting to send/receive a packet and the notification of
a successful transfer. This is based on the xC select statement language feature.

General operation is as follows:

• An XUD_SetReady_ function is called to mark an endpoint as ready to send or receive data. (see §3.2)
• An select statement is used to wait for, and capture, send/receive notifications from the XUD task.

Once an endpoint has been marked ready to send/receive by calling one of the above XUD_SetReady_
functions, a select statement can be used to handle notifications of a packet being sent/received from the
XUD tasks. These notifications are communicated via channels and can be handled via the XUD_*_Select
functions.

The following example shows these asynchronous functions in use:

void ExampleEndpoint(chanend c_ep_out, chanend c_ep_in) {
unsigned char rxBuffer[1024];
unsigned char txBuffer[] = {0, 1, 2, 3, 4};
int length, returnVal;

XUD_ep ep_out = XUD_InitEp(c_ep_out, XUD_EPTYPE_BUL);
XUD_ep ep_in = XUD_InitEp(c_ep_in, XUD_EPTYPE_BUL);

/* Mark OUT endpoint as ready to receive */
XUD_SetReady_Out(ep_out, rxBuffer);
XUD_SetReady_In(ep_in, txBuffer, 5);

while(1) {
select {
case XUD_GetData_Select(c_ep_out, ep_out, length):

/* Packet from host recieved */
for(int i = 0; i< length; i++) {
/* Process packet... */

}
/* Mark EP as ready again */
XUD_SetReady_Out(ep_out, rxBuffer);
break;

case XUD_SetData_Select(c_ep_in, ep_in, returnVal):
/* Packet successfully sent to host */
/* Create new buffer */
for(int i = 0; i < 5; i++) {
txBuffer[i]++;

}

/* Mark EP as ready again */
XUD_SetReady_In(ep_in, txBuffer, 5);
break;

}
}
}

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM006387



USB (3.1.1)

2.9 Status reporting

Status reporting on an endpoint can be enabled so that bus state is known. This is achieved by ORing
XUD_STATUS_ENABLE into the endpoint type when calling the XUD_InitEp() function.

This means that endpoints are notified of USB bus resets (and bus-speed changes). The XUD access
functions (XUD_SetBuffer(), XUD_GetBuffer()) return XUD_RES_RST if a USB bus reset is detected.

After a reset notification has been received, the endpoint must call the XUD_ResetEndpoint() function.
This will return the current bus speed.

2.10 SOF Channel

An application can pass a channel-end to the c_sof parameter of the XUD component. This will cause
a word of data to be output every time the device receives a SOF from the host. This can be used for
timing information for audio devices etc. If this functionality is not required null should be passed as
the parameter. Please note, if a channel-end is passed into XUD component there must be a responsive
task ready to receive SOF notifications otherwise the XUD component will be blocked attempting to send
these messages.

2.11 USB Test Modes

XUD supports the required test modes for USB Compliance testing.

XUD accepts commands from the endpoint 0 channels (in or out) to signal which test mode to enter via
the XUD_SetTestMode() function. The commands are based on the definitions of the Test Mode Selector
Codes in the USB 2.0 Specification Table 11-24. The supported test modes are summarised in Table 5.

Value Test Mode Description

1 Test_J

2 Test_K

3 Test_SE0_NAK

4 Test_Packet

Table 5: Supported Test Mode Se-
lector Codes

The passing other codes endpoints other than 0 to XUD_SetTestMode() could result in undefined be-
haviour.

As per the USB 2.0 Specification a power cycle or reboot is required to exit the test mode.

2.12 Implementing your own Endpoint 0 handler

It is necessary to create an implementation for endpoint 0 which takes two channels, one for
IN and one for OUT. It can take an optional channel for test (see the Test Modes section of
XMOS USB Device (XUD) Library).

void Endpoint0(chanend chan_ep0_out, chanend chan_ep0_in, chanend ?c_usb_test)
{

Every endpoint must be initialized using the XUD_InitEp() function. For endpoint 0 this is looks like:

XUD_ep ep0_out = XUD_InitEp(chan_ep0_out, XUD_EPTYPE_CTL | XUD_STATUS_ENABLE);
XUD_ep ep0_in = XUD_InitEp(chan_ep0_in, XUD_EPTYPE_CTL | XUD_STATUS_ENABLE);

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM006387



USB (3.1.1)

Typically the minimal code for endpoint 0 loops making call to USB_GetSetupPacket(), parses
the USB_SetupPacket_t for any class/applicaton specific requests. Then makes a call to
USB_StandardRequests(). And finally, calls XUD_ResetEndpoint() if there have been a bus-reset. For
example:

while(1)
{

/* Returns XUD_RES_OKAY on success, XUD_RES_RST for USB reset */
XUD_Result_t result = USB_GetSetupPacket(ep0_out, ep0_in, sp);

if(result == XUD_RES_OKAY)
{

switch(sp.bmRequestType.Type)
{

case BM_REQTYPE_TYPE_CLASS:
switch(sp.bmRequestType.Receipient)
{

case BM_REQTYPE_RECIP_INTER:
// Optional class specific requests.
break;

...
}

break;

...
}

result = USB_StandardRequests(ep0_out, ep0_in,
devDesc, devDescLen, ...);

}

if(result == XUD_RES_RST)
usbBusSpeed = XUD_ResetEndpoint(ep0_out, ep0_in);

}

The code above could also over-ride any of the requests handled in USB_StandardRequests() for custom
functionality.

Note, class specific code should be inserted before USB_StandardRequests() is called since if
USB_StandardRequests() cannot handle a request it marks the Endpoint stalled to indicate to the host
that the request is not supported by the device.

USB_StandardRequests() takes char array parameters for device descriptors for both high and full-
speed. Note, if null is passed as the full-speed descriptor the high-speed descriptor is used in full-speed
mode and vice versa.

Note that on reset the XUD_ResetEndpoint() function returns the negotiated USB speed (i.e. full or high
speed).

2.13 Device descriptors

USB device descriptors must be provided for each USB device. They are used to identify the USB device’s
vendor ID, product ID and detail all the attributes of the advice as specified in the USB 2.0 standard. It
is beyond the scope of this document to give details of writing a descriptor, please see the relevant USB
Specification Documents.

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM006387



USB (3.1.1)

3 API

All USB functions can be accessed via the usb.h header:

#include <usb.h>

You will also have to add lib_usb to the USED_MODULES field of your application Makefile.

The application Makefile also needs to add flags to set the XUD_SERIES_SUPPORT define e.g.:

XCC_FLAGS = ... -DXUD_SERIES_SUPPORT=XUD_U_SERIES

The possible values of this define are XUD_U_SERIES, XUD_X200_SERIES or XUD_L_SERIES to specify
U-series, xCORE-200 series or L-series support respectively.

For L-series devices, the USB library uses the hardware clock 0 which is usually reserved as the default
clock. To ensure other code using ports clocked of the default clock block still function correctly. The
application Makefile should also change the default clock block to a different clock e.g.:

XCC_FLAGS = ... -default-clkblk XS1_CLKBLK_5

This is not required for U-series of xCORE-200 series devices.

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM006387



USB (3.1.1)

3.1 Creating an USB device task instance

Function xud

Description USB device driver (U-series).
This performs the low-level USB I/O operations. Note that this needs to run in a thread
with at least 80 MIPS worst case execution speed.

Type void xud(chanend c_epOut[noEpOut],
static const size_t noEpOut,
chanend c_epIn[noEpIn],
static const size_t noEpIn,
chanend ?c_sof,
XUD_BusSpeed_t desiredSpeed,
XUD_PwrConfig pwrConfig)

Parameters c_epOut An array of channel ends, one channel end per output endpoint (USB
OUT transaction); this includes a channel to obtain requests on Endpoint
0.

noEpOut The number of output endpoints, should be at least 1 (for Endpoint 0).

c_epIn An array of channel ends, one channel end per input endpoint (USB IN
transaction); this includes a channel to respond to requests on Endpoint
0.

noEpIn The number of input endpoints, should be at least 1 (for Endpoint 0).

c_sof A channel to receive SOF tokens on. This channel must be connected
to a process that can receive a token once every 125 ms. If tokens are
not read, the USB layer will lock up. If no SOF tokens are required null
should be used for this parameter.

desiredSpeed
This parameter specifies what speed the device will attempt to run at
i.e. full-speed (ie 12Mbps) or high-speed (480Mbps) if supported by the
host. Pass XUD_SPEED_HS if high-speed is desired or XUD_SPEED_FS if
not. Low speed USB is not supported by XUD.

pwrConfig Specifies whether the device is bus or self-powered. When self-powered
the XUD will monitor the VBUS line for host disconnections. This is
required for compliance reasons. Valid values are XUD_PWR_SELF and
XUD_PWR_BUS.

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM006387



USB (3.1.1)

Function xud_l_series

Description USB device driver (L-series).
This performs the low-level USB I/O operations. Note that this needs to run in a thread
with at least 80 MIPS worst case execution speed.

Type void
xud_l_series(chanend c_epOut[noEpOut],

static const size_t noEpOut,
chanend c_epIn[noEpIn],
static const size_t noEpIn,
chanend ?c_sof,
client output_gpio_if ?p_usb_rst,
XUD_BusSpeed_t desiredSpeed,
XUD_PwrConfig pwrConfig)

Parameters c_epOut An array of channel ends, one channel end per output endpoint (USB
OUT transaction); this includes a channel to obtain requests on Endpoint
0.

noEpOut The number of output endpoints, should be at least 1 (for Endpoint 0).

c_epIn An array of channel ends, one channel end per input endpoint (USB IN
transaction); this includes a channel to respond to requests on Endpoint
0.

noEpIn The number of input endpoints, should be at least 1 (for Endpoint 0).

c_sof A channel to receive SOF tokens on. This channel must be connected
to a process that can receive a token once every 125 ms. If tokens are
not read, the USB layer will lock up. If no SOF tokens are required null
should be used for this parameter.

p_usb_rst This is a GPIO interface which should be current to the external phy
reset line. See the GPIO library for details on the interface.es.

desiredSpeed
This parameter specifies what speed the device will attempt to run at
i.e. full-speed (ie 12Mbps) or high-speed (480Mbps) if supported by the
host. Pass XUD_SPEED_HS if high-speed is desired or XUD_SPEED_FS if
not. Low speed USB is not supported by XUD.

pwrConfig Specifies whether the device is bus or self-powered. When self-powered
the XUD will monitor the VBUS line for host disconnections. This is
required for compliance reasons. Valid values are XUD_PWR_SELF and
XUD_PWR_BUS.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM006387



USB (3.1.1)

3.2 The XUD Endpoint API

3.2.1 Supporting types

Type XUD_Result_t

Description Type containing the result of a endpoint function call.

Values XUD_RES_RST
A USB reset has occurred.

XUD_RES_OKAY
Operation completed successfully.

XUD_RES_ERR
An error has occurred.

3.2.2 Setting up the endpoint

Type XUD_ep

Description Opaque type representing endpoint identifiers.

Function XUD_InitEp

Description Initialises an XUD_ep.

Type XUD_ep XUD_InitEp(chanend c_ep, XUD_EpType epType)

Parameters c_ep Endpoint channel to be connected to the XUD library.

epType Indicates the type of the endpoint. Legal types include:
XUD_EPTYPE_CTL (Endpoint 0), XUD_EPTYPE_BUL (Bulk endpoint),
XUD_EPTYPE_ISO (Isochronous endpoint), XUD_EPTYPE_INT (Interrupt
endpoint), XUD_EPTYPE_DIS (Endpoint not used).

Returns Endpoint identifier

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM006387



USB (3.1.1)

3.2.3 OUT endpoint data handling

Function XUD_GetBuffer

Description This function must be called by a thread that deals with an OUT endpoint.
When the host sends data, the low-level driver will fill the buffer. It pauses until data
is available.

Type XUD_Result_t XUD_GetBuffer(XUD_ep ep_out,
unsigned char buffer[],
unsigned &length)

Parameters ep_out The OUT endpoint identifier (created by XUD_InitEP).

buffer The buffer in which to store data received from the host. The buffer is
assumed to be word aligned.

length The number of bytes written to the buffer

Returns XUD_RES_OKAY on success

Copyright 2016 XMOS Ltd. 15 www.xmos.com
XM006387



USB (3.1.1)

3.2.4 OUT endpoint data handling (asynchronous)

Function XUD_SetReady_Out

Description Marks an OUT endpoint as ready to receive data.

Type int XUD_SetReady_Out(XUD_ep ep, unsigned char buffer[])

Parameters ep The OUT endpoint identifier (created by XUD_InitEp).

buffer The buffer in which to store data received from the host. The buffer is
assumed to be word aligned.

Returns XUD_RES_OKAY on success

Function XUD_GetData_Select

Description Select handler function for receiving OUT endpoint data in a select.

Type void XUD_GetData_Select(chanend c,
XUD_ep ep,
unsigned &length,
XUD_Result_t &result)

Parameters c The chanend related to the endpoint

ep The OUT endpoint identifier (created by XUD_InitEp).

length Passed by reference. The number of bytes written to the buffer,

result XUD_Result_t passed by reference. XUD_RES_OKAY on success

Copyright 2016 XMOS Ltd. 16 www.xmos.com
XM006387



USB (3.1.1)

3.2.5 IN endpoint data handling

Function XUD_SetBuffer

Description This function must be called by a thread that deals with an IN endpoint.
When the host asks for data, the low-level driver will transmit the buffer to the host.

Type XUD_Result_t XUD_SetBuffer(XUD_ep ep_in,
unsigned char buffer[],
unsigned datalength)

Parameters ep_in The endpoint identifier (created by XUD_InitEp).

buffer The buffer of data to transmit to the host.

datalength
The number of bytes in the buffer.

Returns XUD_RES_OKAY on success

Function XUD_SetBuffer_EpMax

Description Similar to XUD_SetBuffer but breaks up data transfers into smaller packets.
This function must be called by a thread that deals with an IN endpoint. When the
host asks for data, the low-level driver will transmit the buffer to the host.

Type XUD_Result_t XUD_SetBuffer_EpMax(XUD_ep ep_in,
unsigned char buffer[],
unsigned datalength,
unsigned epMax)

Parameters ep_in The IN endpoint identifier (created by XUD_InitEp).

buffer The buffer of data to transmit to the host.

datalength
The number of bytes in the buffer.

epMax The maximum packet size in bytes.

Returns XUD_RES_OKAY on success

Copyright 2016 XMOS Ltd. 17 www.xmos.com
XM006387



USB (3.1.1)

3.2.6 IN endpoint data handling (asynchronous)

Function XUD_SetReady_In

Description Marks an IN endpoint as ready to transmit data.

Type XUD_Result_t XUD_SetReady_In(XUD_ep ep,
unsigned char buffer[],
int len)

Parameters ep The IN endpoint identifier (created by XUD_InitEp).

buffer The buffer to transmit to the host. The buffer is assumed be word
aligned.

len The length of the data to transmit.

Returns XUD_RES_OKAY on success

Function XUD_SetData_Select

Description Select handler function for transmitting IN endpoint data in a select.

Type void XUD_SetData_Select(chanend c, XUD_ep ep, XUD_Result_t &result)

Parameters c The chanend related to the endpoint

ep The IN endpoint identifier (created by XUD_InitEp).

result Passed by reference. XUD_RES_OKAY on success

Copyright 2016 XMOS Ltd. 18 www.xmos.com
XM006387



USB (3.1.1)

3.3 Endpoint0 utility functions

Function XUD_DoGetRequest

Description Performs a combined XUD_SetBuffer and XUD_GetBuffer.
It transmits the buffer of the given length over the ep_in endpoint to answer an
IN request, and then waits for a 0 length Status OUT transaction on ep_out. This
function is normally called to handle Get control requests to Endpoint 0.

Type XUD_Result_t XUD_DoGetRequest(XUD_ep ep_out,
XUD_ep ep_in,
unsigned char buffer[],
unsigned length,
unsigned requested)

Parameters ep_out The endpoint identifier that handles Endpoint 0 OUT data in the XUD
manager.

ep_in The endpoint identifier that handles Endpoint 0 IN data in the XUD man-
ager.

buffer The data to send in response to the IN transaction. Note that this data
is chopped up in fragments of at most 64 bytes.

length Length of data to be sent.

requested The length that the host requested, (Typically pass the value wLength).

Returns XUD_RES_OKAY on success

Function XUD_DoSetRequestStatus

Description This function sends an empty packet back on the next IN request with PID1.
It is normally used by Endpoint 0 to acknowledge success of a control transfer.

Type XUD_Result_t XUD_DoSetRequestStatus(XUD_ep ep_in)

Parameters ep_in The Endpoint 0 IN identifier to the XUD manager.

Returns XUD_RES_OKAY on success

Copyright 2016 XMOS Ltd. 19 www.xmos.com
XM006387



USB (3.1.1)

Function XUD_SetDevAddr

Description Sets the device’s address.
This function must be called by Endpoint 0 once a setDeviceAddress request is
made by the host.
Must be run on USB core

Type XUD_Result_t XUD_SetDevAddr(unsigned addr)

Parameters addr New device address.

Function XUD_SetStall

Description Mark an endpoint as STALLed.
It is cleared automatically if a SETUP received on the endpoint.
Must be run on same tile as XUD core

Type void XUD_SetStall(XUD_ep ep)

Parameters ep XUD_ep type.

Function XUD_SetStallByAddr

Description Mark an endpoint as STALL based on its EP address.
Cleared automatically if a SETUP received on the endpoint. Note: the IN bit of the
endpoint address is used.
Must be run on same tile as XUD core

Type void XUD_SetStallByAddr(int epNum)

Parameters epNum Endpoint number.

Function XUD_ClearStall

Description Mark an endpoint as NOT STALLed.
Must be run on same tile as XUD core

Type void XUD_ClearStall(XUD_ep ep)

Parameters ep XUD_ep type.

Copyright 2016 XMOS Ltd. 20 www.xmos.com
XM006387



USB (3.1.1)

Function XUD_ClearStallByAddr

Description Mark an endpoint as NOT STALLed based on its EP address.
Note: the IN bit of the endpoint address is used.
Must be run on same tile as XUD core

Type void XUD_ClearStallByAddr(int epNum)

Parameters epNum Endpoint number.

Function XUD_ResetEndpoint

Description This function will complete a reset on an endpoint.
Can take one or two XUD_ep as parameters (the second parameter can be set to
null). The return value should be inspected to find the new bus-speed. In Endpoint 0
typically two endpoints are reset (IN and OUT). In other endpoints null can be passed
as the second parameter.

Type XUD_BusSpeed_t XUD_ResetEndpoint(XUD_ep one, XUD_ep &?two)

Parameters one IN or OUT endpoint identifier to perform the reset on.

two Optional second IN or OUT endpoint structure to perform a reset on.

Returns Either XUD_SPEED_HS - the host has accepted that this device can execute at high
speed, or XUD_SPEED_FS - the device is runnig at full speed.

Function XUD_SetTestMode

Description Enable a specific USB test mode in XUD.
Must be run on same tile as XUD core

Type void XUD_SetTestMode(XUD_ep ep, unsigned testMode)

Parameters ep XUD_ep type (must be endpoint 0 in or out)

testMode The desired test-mode

Copyright 2016 XMOS Ltd. 21 www.xmos.com
XM006387



USB (3.1.1)

Type USB_BmRequestType_t

Description Data structure describing a USB request type.

Fields unsigned char Recipient
Where the request is directed to:.

• 0b00000: Device * 0b00001: Specific interface * 0b00010: Specific
endpoint * 0b00011: Other element in device

unsigned char Type
The type of the request:.

• 0b00: Standard request * 0b01: Class specific request * 0b10:
Request by vendor specific driver

unsigned char Direction
The direction of the request:.

• 0 (Host->Dev) * 1 (Dev->Host)

Type USB_SetupPacket_t

Description Setup packet data structure.

Fields USB_BmRequestType_t bmRequestType
Specifies direction of dataflow, type of rquest and recipient.

unsigned char bRequest
Specifies the request.

unsigned short wValue
Host can use this to pass info to the device in its own way.

unsigned short wIndex
Typically used to pass index/offset such as interface or EP no.

unsigned short wLength
Number of data bytes in the data stage (for Host -> Device this this is
exact count, for Dev->Host is a max).

Copyright 2016 XMOS Ltd. 22 www.xmos.com
XM006387



USB (3.1.1)

Function USB_GetSetupPacket

Description Receives a Setup data packet and parses it into the passed USB_SetupPacket_t struc-
ture.

Type XUD_Result_t USB_GetSetupPacket(XUD_ep ep_out,
XUD_ep ep_in,
USB_SetupPacket_t &sp)

Parameters ep_out OUT endpint from XUD

ep_in IN endpoint to XUD

sp SetupPacket structure to be filled in (passed by ref)

Returns Returns XUD_RES_OKAY on success, XUD_RES_RST on bus reset

Copyright 2016 XMOS Ltd. 23 www.xmos.com
XM006387



USB (3.1.1)

Function USB_StandardRequests

Description This function deals with common requests This includes Standard Device Requests
listed in table 9-3 of the USB 2.0 Spec all devices must respond to these requests, in
some cases a bare minimum implementation is provided and should be extended in
the devices EP0 code It handles the following standard requests appropriately using
values passed to it:.
Get Device Descriptor (using devDesc_hs/devDesc_fs arguments)
Get Configuration Descriptor (using cfgDesc_hs/cfgDesc_fs arguments)
String requests (using strDesc argument)
Get Device_Qualifier Descriptor
Get Other-Speed Configuration Descriptor
Set/Clear Feature (Endpoint Halt)
Get/Set Interface
Set Configuration
If the request is not recognised the endpoint is marked STALLED

Type XUD_Result_t USB_StandardRequests(XUD_ep ep_out,
XUD_ep ep_in,
unsigned char ?devDesc_hs[],
int devDescLength_hs,
unsigned char ?cfgDesc_hs[],
int cfgDescLength_hs,
unsigned char ?devDesc_fs[],
int devDescLength_fs,
unsigned char ?cfgDesc_fs[],
int cfgDescLength_fs,
char *unsafe strDescs[],
int strDescsLength,
USB_SetupPacket_t &sp,
XUD_BusSpeed_t usbBusSpeed)

Continued on next page

Copyright 2016 XMOS Ltd. 24 www.xmos.com
XM006387



USB (3.1.1)

Parameters ep_out Endpoint from XUD (ep 0)

ep_in Endpoint from XUD (ep 0)

devDesc_hs
The Device descriptor to use, encoded according to the USB standard

devDescLength_hs
Length of device descriptor in bytes

cfgDesc_hs
Configuration descriptor

cfgDescLength_hs
Length of config descriptor in bytes

devDesc_fs
The Device descriptor to use, encoded according to the USB standard

devDescLength_fs
Length of device descriptor in bytes. If 0 the HS device descriptor is
used.

cfgDesc_fs
Configuration descriptor

cfgDescLength_fs
Length of config descriptor in bytes. If 0 the HS config descriptor is
used.

strDescs

strDescsLength

sp USB_SetupPacket_t (passed by ref) in which the setup data is returned

usbBusSpeed
The current bus speed (XUD_SPEED_HS or XUD_SPEED_FS)

Returns Returns XUD_RES_OKAY on success.

Copyright 2016 XMOS Ltd. 25 www.xmos.com
XM006387



USB (3.1.1)

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2016 XMOS Ltd. 26 www.xmos.com
XM006387



USB (3.1.1)

APPENDIX B - USB library change log

B.1 3.1.1

• Update to source code license and copyright

B.2 3.1.0

• ADDED: Bulk read benchmark to AN00136
• CHANGE: Throughput performance of bulk example (AN00136) dramatically improved using async

API of host libusb
• CHANGE: Standard descriptor structs now packed (and only available from C)
• RESOLVED: Initialisation issue on xCORE-200

B.3 3.0.0

• Initial version of lib_usb. The code has been moved over from the old module_xud (sc_xud), mod-
ule_usb (sc_usb) and module_usb_shared (sc_usb) repositories. Please see those repos for old
changes.

• Split XUD_Manager in separate xud functions for U/X200 series and L series for a simpler interface.
• Removed the EpTypeTable argument from XUD_Manager. Now endpoints register their type via an

extra argument to XUD_InitEp. This makes multiple endpoints programs easier to maintain.
• Changes to dependencies:

– lib_logging: Added dependency 2.0.0
– lib_xassert: Added dependency 2.0.0
– lib_gpio: Added dependency 1.0.0

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 27 www.xmos.com
XM006387


	USB Library
	Hardware setup
	Physical characteristics and setup
	Ports/Pins
	U-Series
	xCORE-200 Series
	L-Series


	Usage
	The XUD (XMOS USB device) driver
	Core speed
	Setting up the XUD in your program
	Endpoint addresses
	PwrConfig
	Endpoint communication with the XUD component
	Blocking sending and receiving data
	Asynchronous sending and recieving of data
	Status reporting
	SOF Channel
	USB Test Modes
	Implementing your own Endpoint 0 handler
	Device descriptors

	API
	Creating an USB device task instance
	The XUD Endpoint API
	Supporting types
	Setting up the endpoint
	OUT endpoint data handling
	OUT endpoint data handling (asynchronous)
	IN endpoint data handling
	IN endpoint data handling (asynchronous)

	Endpoint0 utility functions

	Known Issues
	USB library change log
	3.1.1
	3.1.0
	3.0.0


